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Abstract

Despite being a non-invasive imaging modality, coronary computed tomography
angiography (CCTA) is still not the clinical gold-standard modality for the diagnosis
and evaluation of Coronary Artery Diseases (CAD), which is typically performed
with an invasive coronary angiography (ICA). In this work, we aim at bringing
CCTA diagnosis performance closer to the level of the ICA. We propose a deep
attention learning framework that takes as an input non-invasive CCTA images
and is able to predict a clinical decision, such as revascularization, that is typically
based on invasive modalities such as ICA. We represent the CCTA volumetric
imaging by two cross-sectional views that follow the curvature of the coronary
artery, and we use an attention mechanism that learns a fused representation for
better diagnosis. Experimental results on a clinical study of 80 patients indicate that
the learned fused model achieves a significant gain in the performance (F1-score:
0.53 ± 0.11) with respect to the CT fractional-flow-reserve (FFRCT), a clinical
baseline estimating the drop of flow from CCTA (F1-score: 0.46± 0.09). These
preliminary results confirm that a data-driven approach can boost the diagnosis
power of CCTA and eventually contribute towards the wider adoption of this
non-invasive imaging modality in clinical settings.

1 Introduction

Myocardial infarction (MI), commonly referred to as a heart attack, is attributed to an impairment
in blood flood by atherosclerotic plaque causing a narrowing, or stenosis, in the coronary artery. In
clinics, Invasive coronary angiography (ICA) is considered the gold standard for the assessment of
the hemodynamic significance of stenosis. However, it has been identified that only around 1%-13%
of such invasive examinations target patients with obstructive coronary artery disease (Agewall et al.,
2017). Avoiding unnecessary invasive procedures and replacing them with a non-invasive alternative,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



such as the X-ray coronary computed tomography angiography (CCTA), is a desirable solution
(Gorenoi et al., 2012). CCTA provides a 3D anatomical assessment of the coronary arteries, plaque
composition, morphology and stenosis quntification. Fractional-flow-reserve derived from CCTA
(FFR-CT) provides a non-invasive assessment of the hemodynamic impact of a stenosis (Nørgaard
et al., 2014). Nevertheless, CCTA and FFR-CT has not been sufficiently validated in higher risk
settings like acute myocardial infarction (Collet et al., 2021).

In the last years, there have been attempts at using machine learning and deep learning methods
to alleviate some of the challenges that hinder CCTA from becoming the gold standard in the
diagnosis of flow-limiting coronary artery disease. Along these lines, various works try to estimate
predictive measures concerning stenoses (Griffin et al., 2022; Hong et al., 2019; Wolterink et al.,
2016), some involving coronary artery segmentation (Lin et al., 2022). However, these works are
limited to extracting handcrafted predictive measures rather than discovering new ones. Finally, the
works by Denzinger et al. (2019) and Zou et al. (2020) approach the task of directly predicting the
cardiologist decision of administering revascularization treatment procedure with promising results.

Figure 1: Left: axial views
along the artery centerline.
Right: two cross-sectional
views used in our work. Il-
lustration based on Kanitsar
et al. (2002).

They represent the 3D content of the CT using a sequence of axial
views following the curvature (center line) of the artery, (see Fig-
ure 1, left). In our work, we tackle a similar task of predicting the
cardiologist’s decision directly from CCTA. However, we use two
reconstructed cross-sectional views to represent a coronary segment
(see Figure 1, right). This choice, commonly referred to in the lit-
erature as 2.5D representation, is motivated by the need to reduce
the overall computational effort Denzinger et al. (2020, 2022). We
investigate approaches for fusing information from these two views
within a weak labeling setting, i.e, the labels are given in the image
level without the annotation of the specific region of interest (lesion)
in the image. To this end, we propose an attention learning framework
that is able to fuse the views effectively. The framework is validated
on a clinical study of 80 patients, with promising results.
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Figure 2: Architecture of the culprit lesion classification model. Both views x(1) and x(2) are passed
through two siamese ResNet14 networks to generate feature maps – sets of qi vectors (Pang et al.,
2021). After projecting to a lower dimensional space and stacking into a Q̃ matrix, they are combined
through the content attention module to generate an artery segment representation z (Ilse et al., 2018).
Finally, the classification of the sample as culprit (C) or non-culprit (NC) is performed.

2 Methodology

2.1 Clinical study

The imaging data used in our work comes from patients recruited in an observational trial. The
patients, who were in the emergency department with a suspected MI, had a CCTA prior getting
an ICA. From each CCTA scan, based on a coronary artery centerline extraction, curved planar
reformation (CPR) views were reconstructed for segments of the three major artery branches: right
coronary artery (RCA), segments 1, 2 and 3; left anterior descending coronary artery (LAD), segments
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1, 2 and 3; and the first segment of left circumflex artery (LCX). Each segment was visualized with two
CPR views. The primary view was selected automatically by the hospital software (GE AW Advanced
Visualisation) used to generate the reconstructed views. The secondary view was reconstructed in the
orthogonal plane to the primary view, adjusted by the medical expert by up to 20°.

Each artery segment was separately labeled as “culprit”, i.e., containing a culprit lesion, or “non-
culprit”, i.e., containing a lesion that was not identified as the one responsible for the heart attack
or in which no lesions were present. This classification of segments was performed by the medical
expert based on the visual assessment of ICA and FFR measurement, if available. The resulting
dataset included 514 coronary artery segments from 80 patients among which 63 (12.3%) segments
were labeled as culprit.

2.2 Methods

Our goal is to design a learning framework that takes as an input the two orthogonal views of each
artery segment obtained from CCTA scans and infers if a segment is culprit or not. We pose the
problem as a binary classification problem, and build a framework that takes into consideration two
main challenges of our setup: (i) weak labeling: the labels are given in the image level, while only
specific region in the image correspond with its label; (ii) the representation of the 3D segments from
the two axial views.

Weak labeling treatment. Following similar reasoning as the one in Ilse et al. (2018); Pang et al.
(2021), we treat this problem within the multiple instance learning (MIL) framework, where an
image is represented by forming a bag of instances associated with one label. In our work, however,
the instances are not represented by patches sampled from the image, but by learned features that
aggregate information from different regions of the image. This reduces the problem to learning
a feature attention layer to highlight information from areas in the image that are relevant for the
classification task at hand.

Learned two-views fusion. In order to extract predictive features from each view, we pass them
separately through a siamese ResNet (He et al., 2016) backbone to obtain two feature maps. After
computing the embedding for each view, we fuse them by learning an attention mechanism inspired
by the work of Pang et al. (2021). We use content attention and apply it to the set of feature vectors
from both views together, as visualized in Figure 2. This generates a learned weighted average
representation for the artery segment that can be ultimately classified as culprit or non-culprit by a
fully-connected (FC) layer. Multi-view fusion in the context of coronary artery disease analysis has
been applied in Zhang et al. (2020) in a task of stenosis quantification in ICA, employing a fixed
fusion, rather than a learned one as proposed in our work. The features extraction backbone, together
with the views fusion attention layer and the final classifier are trained end-to-end. The objective
function is chosen to be the focal-loss (Lin et al., 2017) to account for the imbalance between the
culprit and non-culprit classes.

3 Results and discussion

Due to the scarcity of the available dataset, we split the data into five folds and use cross-validation to
train and validate the performance of the proposed pipeline. Samples were randomly split into folds
patient-wise in a stratified manner, i.e., the ratio between patients with and without culprit segments
is similar in each fold. Table 3 summarizes the results of our proposed approach (learned fusion) and
compares them to five baselines: (1) Naive, a label is assigned randomly based on the frequency of
each class in the train set; (2) Views as channels, the two views are stacked in the input’s channels
dimension; (3) Learned attention, application of the method by Pang et al. (2021), views still stacked
as channels; (4) Feature concatenation, employing the method by Zhang et al. (2020) concatenating
max-pooled feature representations of the two views; (5) FFRCT, FFR values estimated from the
CCTA by an external laboratory (HeartFlow ®, Redwood City, CA 94063, USA). The results suggest
that learning the views fusion while taking into account the imbalance between culprit-related areas
and non-culprit or background areas significantly contributes to the performance of the MI culprit
prediction task. We believe that this performance can be further improved by introducing more than
two cross-sectional views, similarly to what has been shown in (Denzinger et al., 2022) for a different
task and by using radiomics for the representation of the views (Denzinger et al., 2019).
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Method F1 Precision Recall Specificity AUC Accuracy

Naive 0.12 0.12 0.12 0.88 – 0.78

Views as channels 0.36 ± 0.12 0.39 ± 0.17 0.37 ± 0.14 0.91 ± 0.04 0.35 ± 0.14 0.84 ± 0.03

Learned attention 0.40 ± 0.10 0.39 ± 0.10 0.45 ± 0.15 0.90 ± 0.04 0.40 ± 0.08 0.84 ± 0.03

Feature concatenation 0.46 ± 0.13 0.53 ± 0.18 0.46 ± 0.18 0.93 ± 0.05 0.45 ± 0.13 0.87 ± 0.04

Learned fusion 0.53 ± 0.11 0.55 ± 0.18 0.55 ± 0.14 0.93 ± 0.05 0.52 ± 0.17 0.88 ± 0.04

FFRCT 0.46 ± 0.09 0.33 ± 0.06 0.77 ± 0.18 0.78 ± 0.04 – 0.78 ± 0.04
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